

Lessons Learned from the URGENT 2024 Speech Enhancement Challenge

Wangyou Zhang¹, Kohei Saijo², Samuele Cornell³, Robin Scheibler⁴, Chenda Li¹, Zhaoheng Ni⁵, Anurag Kumar⁵, Marvin Sach⁶, Wei Wang¹, Yihui Fu⁶, Shinji Watanabe³, Tim Fingscheidt⁶, Yanmin Qian¹

¹Shanghai Jiao Tong University, China ²Waseda University, Japan ³Carnegie Mellon University, USA ⁴Google DeepMind, Japan ⁵Meta, USA ⁶Technische Universität Braunschweig, Germany

CONTENTS

Background

Analysis: Data

Analysis: Evaluation Metrics

Observation

1. Most existing speech enhancement (SE) research focuses on a single or limited range of conditions. (Narrow task defintion)

noisy anechoic reverberant certain sample rate certain distortion

2. SE models are usually trained on small-sized data or single-domain data. (Lack of data diversity)

- 3. The evaluation of SE models is often done only on matched conditions, with just a few metrics. (Limited evaluation)
- 4. Performance has largely saturated on existing benchmarks, which only reflect limited scenarios in real world. (Outdated benchmarks)

Observation (Cont'd)

5. Recent advances in generative methods for speech enhancement

Goal

Conventional
Speech Enhancement

Universally Robust Speech Enhancement w/ Generalizability

- Only designed for a limited number of subtasks
- Only support one sampling frequency

Universality

- Explicitly designed for various subtasks
- Support different input formats

- Only evaluated in limited data/conditions
- Limited evaluation metrics

- Robustness &
 Generalizability
- Evaluated in a wide range of conditions
- Diverse evaluation metrics

- Dominated by discriminative methods
- Mostly trained on single-domain / limited data
- Diversity
- Generative methods are encouraged
- Large-scale multi-domain data

URGENT Challenge – Task definition

- 4 sub-tasks
- A comprehensive range of sampling frequencies

Universally Robust Speech Enhancement w/ Generalizability

Universality

- Explicitly designed for various subtasks
- Support different input formats

Robustness &

Generalizability

- Evaluated in a wide range of conditions
- Diverse evaluation metrics

Diversity

- Generative methods are encouraged
- Large-scale multi-domain data

URGENT Challenge – Evaluation metrics

- 5 categories of multifaceted metrics
- ❖ A ranking-based overall evaluation protocol

Non-intrusive

DNSMOS

NISQA

Universally Robust Speech Enhancement w/ Generalizability

Intrusive

POLQA

SDR

PESQ

MCD

ESTOI

LSD

Universality

- Explicitly designed for various subtasks
- Support different input formats

Downstream-task-independent

SpeechBERTScore

LPS

Robustness &

Generalizability

- Evaluated in a wide range of conditions
- Diverse evaluation metrics

Downstreamtask-dependent

SpkSim

WAcc

Diversity

- Generative methods are encouraged
- Large-scale multi-domain data

Subjective

MOS

URGENT Challenge – Data

	Туре	Corpus	Condition			
	1300 hours	LibriVox data from DNS5 challenge	Audiobook			
		LibriTTS reading speech	Audiobook			
~1		CommonVoice 11.0 English portion	Crowd-sourced voices			
		VCTK reading speech	Newspaper, etc.			
		WSJ reading speech	WSJ news			
~2	250 hours Noise	Audioset+FreeSound noise in DNS5 challenge	Crowd-sourced + Youtube			
		WHAM! noise	4 Urban environments			
~6	60k RIRs RIR	Simulated RIRs from DNS5 challenge	SLR28			

Universally Robust Speech Enhancement w/ Generalizability

Universality

- Explicitly designed for various subtasks
- Support different input formats

Robustness &

Generalizability •

- Evaluated in a wide range of conditions
- Diverse evaluation metrics

Diversity

- Generative methods are encouraged
- Large-scale multi-domain data

CONTENTS

Background

Analysis: Data

Analysis: Evaluation Metrics

Analysis: Data

1. Sampling rate

- The supposed 48 kHz speech can actually only contain much fewer frequency components.
- It is important to re-estimate the effective bandwidth of collected audio data, even for some widely-used corpora.

2. Label noisiness

- The noise floor commonly exists in non-studio-quality speech datasets, which may be supposed to be "clean".
- The SE model can be then misguided to preserve the noise floor (usually at a low level) in the enhanced speech.

Analysis: Data (I) – sampling rate

Sampling rate distribution of source speech data (Original)

Analysis: Data (I) – sampling rate

Sampling rate distribution of source speech data (Re-estimated)

Analysis: Data (I) – sampling rate

Sampling rate distribution of source noise data (Re-estimated)

Analysis: Data

1. Sampling rate

- The seemingly 48 kHz speech can actually only contain much fewer frequency components.
- It is important to re-estimate the effective bandwidth of collected audio data, even for some widely-used corpora.

2. Label noisiness

- The noise floor commonly exists in non-studio-quality speech datasets, which may be supposed to be "clean".
- The SE model can be then misguided to preserve the noise floor (usually at a low level) in the enhanced speech.

Estimated SNRs of the original speech labels in training&validation sets

Estimated SNRs of the enhanced version of speech labels in training&validation sets

"Clean" speech label from VCTK (Original)

"Clean" speech label from VCTK (Enhanced version)

"Clean" speech label from WSJ (Original)

"Clean" speech label from WSJ (Enhanced version)

CONTENTS

Background

Analysis: Data

Analysis: Evaluation Metrics

Analysis: Evaluation Metrics

1. Final leaderboard

https://urgent-challenge.com/competitions/5#final_results

Dank	Team ID	Non-intrusive SE metrics			Intrusive SE metrics			Downstream-task-indep.		Downstream-task-dep.		Subjective Overall			
Kank		DNSMOS ↑	NISQA ↑	PESQ ↑	ESTOI ↑	SDR ↑	MCD↓	LSD ↓	POLQA ↑	SBS.↑	LPS↑	SpkSim ↑		MOS↑	ranking score↓
1	T1	3.06(2)	3.66(3)	2.65 (3)	0.87(2)	14.58 (1)	3.04(1)	2.92(7)	3.51(2)	0.84(3)	0.82(4)	0.80(3)	73.57 (2)	3.52 (1)	2.43
2	T2	3.00(6)	3.59 (6)	2.80(1)	0.87(1)	14.52(2)	3.15(3)	2.78(4)	3.69(1)	0.85(1)	0.83(1)	0.82 (1)	72.91 (4)	3.46 (3)	2.90
3a	T3a	2.98 (9)	3.44 (7)	2.55 (6)	0.85 (4)	13.31 (4)	3.33 (6)	2.99 (9)	3.34 (6)	0.84 (5)	0.83(2)	0.77 (7)	74.03 (1)	3.44 (4)	5.07
3b	T3b	2.95 (11)	3.35 (11)	2.66 (2)	0.86(3)	13.54 (3)	3.14(2)	2.70(1)	3.45 (3)	0.85(2)	0.83(3)	0.81(2)	73.10(3)	3.40 (7)	5.07
4	T4	2.98 (8)	3.37 (10)	2.60 (4)	0.85(5)	13.14 (5)	3.21 (4)	2.75 (3)	3.43 (4)	0.84 (4)	0.81 (5)	0.78 (5)	71.67 (5)	3.34 (10)	6.53
5	T5	3.02 (4)	3.60 (5)	2.32 (9)	0.82(8)	11.38 (10)	3.34(7)	3.45 (14)	3.16(8)	0.82 (9)	0.78(9)	0.76 (8)	67.96 (8)	3.47 (2)	6.57
6	T6	3.00(7)	3.35 (12)	2.52 (8)	0.84(6)	12.63 (6)	3.32 (5)	2.92(8)	3.31 (7)	0.83 (6)	0.80(6)	0.78 (6)	70.13 (6)	3.41 (6)	6.83
7	T7	2.90 (16)	3.38 (9)	2.55 (5)	0.83(7)	12.42 (7)	3.61 (10)	2.86(5)	3.36 (5)	0.83 (7)	0.79(7)	0.79 (4)	69.19 (7)	3.44 (5)	7.30
8	T8	2.96 (10)	3.15 (15)	2.55 (7)	0.80(11)	10.72 (11)	3.83 (11)	2.73 (2)	3.15 (9)	0.81 (11)	0.75(11)	0.74 (11)	66.15 (13)	3.36 (9)	10.60
9	T9	2.92 (14)	3.42 (8)	2.26 (11)	0.80(12)	12.23 (8)	4.12 (12)	3.54 (16)	3.04(11)	0.79 (12)	0.74(12)	0.71 (12)	67.03 (11)	3.33 (11)	11.43
10	T10	2.88 (18)	3.17 (14)	2.32 (10)	0.81(9)	11.50 (9)	3.46 (8)	3.00 (10)	3.06 (10)	0.82 (10)	0.77(10)	0.75 (9)	67.45 (10)	3.24 (13)	11.57
11	T11	3.06(3)	3.94(1)	1.88 (19)	0.76(15)	7.49 (20)	4.96 (20)	4.76 (20)	2.64 (17)	0.75 (20)	0.70(17)	0.58 (21)	60.28 (19)	3.39 (8)	13.40
12	T12	2.92 (12)	2.47 (21)	2.14 (12)	0.80(10)	9.73 (15)	3.53 (9)	3.36 (13)	2.74 (14)	0.83(8)	0.78(8)	0.75 (10)	67.68 (9)	2.87 (21)	13.43
13	T13	2.89 (17)	3.23 (13)	2.03 (16)	0.77(14)	10.43 (13)	4.63 (16)	3.83 (19)	2.69 (15)	0.77 (14)	0.72(14)	0.67 (16)	62.68 (15)	3.32 (12)	14.40
14	T14	2.88 (19)	2.95 (18)	2.13 (13)	0.78(13)	10.62 (12)	4.13 (13)	3.24 (12)	2.89 (12)	0.77 (13)	0.73(13)	0.70 (13)	66.89 (12)	3.06 (17)	14.70
15	Baseline	2.83 (21)	3.07 (17)	2.07 (14)	0.76 (16)	10.13 (14)	4.22 (15)	3.09 (11)	2.81 (13)	0.77 (16)	0.70(16)	0.70 (14)	62.97 (14)	3.12 (16)	15.77
16	T16	2.92 (13)	2.73 (19)	2.04 (15)	0.76(17)	9.47 (16)	4.82 (19)	3.55 (17)	2.66 (16)	0.77 (15)	0.71(15)	0.67 (17)	62.24 (16)	2.95 (19)	16.63
17	T17	3.26(1)	3.83 (2)	1.36 (22)	0.60(21)	0.41 (22)	6.27 (21)	5.43 (21)	1.74 (22)	0.68 (21)	0.56(21)	0.48 (23)	40.73 (21)	3.05 (18)	16.80
18	T18	3.02 (5)	3.61 (4)	1.47 (21)	0.51(23)	-6.16 (23)	8.44 (22)	7.12 (23)	1.93 (21)	0.67 (22)	0.53(22)	0.54 (22)	32.08 (22)	3.17 (15)	17.13
19	T19	2.85 (20)	3.12 (16)	1.97 (18)	0.74(18)	9.43 (17)	4.65 (17)	3.74(18)	2.59(18)	0.76 (18)	0.69(18)	0.67 (18)	60.28 (19)	3.21 (14)	17.23
20	T20	2.91 (15)	2.55 (20)	2.00 (17)	0.73 (19)	9.03 (19)	4.18 (14)	2.89 (6)	2.57 (19)	0.77 (17)	0.68 (20)	0.68 (15)	60.64 (18)	2.91 (20)	17.63
21	T21	2.53 (22)	2.39 (22)	1.84 (20)	0.73 (20)	9.08 (18)	4.74 (18)	3.51 (15)	2.47 (20)	0.75 (19)	0.68 (19)	0.65 (19)	59.95 (20)	2.82 (22)	20.20
22	Noisy input	1.70 (23)	1.53 (23)	1.26 (23)	0.58 (22)	0.98 (21)	9.71 (23)	5.46 (22)	1.58 (23)	0.59 (23)	0.52 (23)	0.64 (20)	61.92 (17)	1.88 (23)	21.97

Analysis: Evaluation Metrics

2. Correlation with mean opinion score (MOS)

Linear Correlation Coefficient

Analysis: Evaluation Metrics

2. Correlation with mean opinion score (MOS)

Kendall Rank Correlation Coefficient

Takeaways

- It is feasible to build a single universal SE system to handle various
 - Sampling rates
 - SE subtasks (e.g., denoising, dereverberation, declipping, bandwidth extension)
- Data quality (effective bandwidth, label noisiness, etc.) might be an obstacle to improving SE performance.
- Another comprehensive summary paper is submitted to NeurIPS 2025, containing details of the top-performing systems and a new SQA dataset.
- What to explore next?
 - More languages, more distortions, more diverse data, etc.
 - **❖** ⇒ 2nd URGENT Challenge